Numerical Solutions of the General Rosenau—RLW Equation Using Meshless Kernel Based Method of Lines
نویسندگان
چکیده
منابع مشابه
buckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
The meshless kernel-based method of lines for solving the equal width equation
The Equal Width equation governs nonlinear wave phenomena like waves in shallow water. Here, it is solved numerically by the Method of Lines using a somewhat unusual setup. There is no linearization of the nonlinear terms, no error in handling the starting approximation, and there are boundary conditions only at infinity. To achieve a space discretization of high accuracy with only few trial fu...
متن کاملThe meshless Kernel-based method of lines for parabolic equations
1. Introdu tion. There are plenty of appli ation papers in whi h kernels or radial basis fun tions are su essfully used for solving partial di erential equations by meshless methods. The usage of kernels is typi ally based on spatial interpolation at s attered lo ations, writing the trial fun tions entirely in terms of nodes [2℄. For stationary partial di erential equations, the dis retization ...
متن کاملassessment of the efficiency of s.p.g.c refineries using network dea
data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...
A Numerical Meshless Technique for the Solution of the two Dimensional Burger’s Equation Using Collocation Method
In this paper we propose a meshfree technique for the numerical solution of the two dimensional Burger’s equation. Collocation method using the Radial Basis Functions (RBFs) is coupled with first order accurate finite difference approximation. Different types of RBFs are used for this purpose. Performance of the proposed method is successfully tested in terms of various error norms. In the case...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2016
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/766/1/012030